Πέμπτη, 16 Οκτωβρίου 2014

Δυο παιδιά συναντώνται.

Ο Αντώνης βγαίνει από το σπίτι του τη στιγμή t=0 και περπατώντας με σταθερή ταχύτητα κινείται σε ευθύγραμμο δρόμο, οπότε μετά από λίγο συναντά τον φίλο του Βασίλη, ο οποίος κινείται αντίθετα. Σταματούν για λίγο και συνομιλούν και στη συνέχεια συνεχίζουν την κίνησή τους. Στο παραπάνω διάγραμμα φαίνεται η θέση του Αντώνη σε συνάρτηση με το χρόνο, θεωρώντας αρχή του άξονα x (x=0) τη θέση της συνάντησης.
i) Να υπολογίστε την ταχύτητα του Αντώνη στα χρονικά διαστήματα που περπατά.
ii) Να κάνετε τα διαγράμματα σε συνάρτηση με το χρόνο:
α) της μετατόπισής του,     β) του διαστήματος που διανύει
μέχρι τη χρονική στιγμή t=90s.
iii) Αν ο Βασίλης περπατούσε με σταθερή ταχύτητα μέτρου 1,2m/s στο παραπάνω χρονικό διάστημα:
1. Να βρεθούν η αρχική και τελική θέση του.
2. Να γίνουν τα διαγράμματα:
α) της θέσης του,   β) της μετατόπισής του  και   γ) του διαστήματος που διανύει
ή
Δυο παιδιά συναντώνται.


Παρασκευή, 10 Οκτωβρίου 2014

Δύο αυτοκίνητα κινούνται ευθύγραμμα.


Σε έναν ευθύγραμμο δρόμο κινούνται δυο αυτοκίνητα Α και Β, προς την ίδια κατεύθυνση, με σταθερές ταχύτητες μέτρων υ1=10m/s και υ2=14m/s. Ένα παιδί είναι ακίνητο στην άκρη του δρόμου και σε μια στιγμή που τα δυο αυτοκίνητα απέχουν εξίσου κατά d=60m από αυτό, πατάει το χρονόμετρο για να μελετήσει την κίνησή τους. Θεωρεί δε, τη θέση που στέκεται, ως αρχή του άξονα x. (θέτει το μηδέν του άξονα στο σημείο Ο του σχήματος με θετική την προς τα δεξιά κατεύθυνση.

i) Ποια είναι η θέση κάθε αυτοκινήτου τη στιγμή t=0;
ii) Ποιες οι θέσεις των αυτοκινήτων τη χρονική στιγμή t1=10s;
iii) Να βρεθεί σε πόση απόσταση από το παιδί, το κόκκινο αυτοκίνητο θα βρίσκεται δίπλα στο μπλε.
iv) Πόσο απέχει από το παιδί το μπλε (Α) αυτοκίνητο, όταν το κόκκινο (Β) απέχει 570m;
v) Τελικά το παιδί σχεδίασε σε κοινό διάγραμμα τις γραφικές παραστάσεις της θέσης κάθε αυτοκινήτου, σε συνάρτηση με το χρόνο, μέχρι τη στιγμή t΄=50s. Μπορείτε να σχεδιάστε το διάγραμμα που πήρε;

Δευτέρα, 6 Οκτωβρίου 2014

Μπορεί 3+4 να μας κάνει 5;


Ένα αυτοκίνητο βρίσκεται σε ένα σημείο Α ενός δρόμου, απέχοντας κατά 400m από μια διασταύρωση με ένα κάθετο δρόμο. Σε μια στιγμή ξεκινά και, μετά από ένα λεπτό και είκοσι δευτερόλεπτα, φτάνει στη διασταύρωση, στρίβει και φτάνει μετά από άλλα σαράντα δευτερόλεπτα σε σημείο Β, που απέχει 300m από τη διασταύρωση, όπως στο σχήμα.
Α) Χρησιμοποιώντας ένα προσανατολισμένο σύστημα αξόνων x,y με αρχή το σημείο Ο, να συμπληρώστε τα κενά στις παρακάτω προτάσεις.
i) Το αυτοκίνητο αρχικά βρίσκεται στη θέση (x1,y1)= …… και τελικά φτάνει στη θέση (x2, y2)=……..
ii) Θεωρώντας ότι το αυτοκίνητο ξεκινά να κινείται τη χρονική στιγμή t0=0, τότε φτάνει στη θέση Ο τη στιγμή t1=…..s και στη θέση Β τη στιγμή t2=….s.
iii) Η μετατόπισή του από το Α μέχρι το Ο είναι ίση με …… ενώ από το Ο στο Β είναι …….
iv) Να υπολογίστε την μέση ταχύτητα του αυτοκινήτου, από το Α στο Ο, όπως και την αντίστοιχη από το Ο στο Β.
Β) Να σχεδιάστε στο σχήμα τις παραπάνω μετατοπίσεις, όπως και το διάνυσμα της συνολικής μετατόπισης.
Γ) Να υπολογίστε το μέτρο της συνολικής μετατόπισης και το συνολικό διάστημα που διανύει το αυτοκίνητο.
ή
Μπορεί 3+4 να μας κάνει 5;



Σάββατο, 12 Ιουλίου 2014

Ένα επαναληπτικό Σταυρόλεξο

Άσκηση - Νόμοι Νεύτωνα

Ερωτήσεις σε σχεδιαγράμματα

Δύναμη F με διαφορετικές διευθύνσεις

Σώμα μάζας m=2Kg ισορροπεί ακίνητο πάνω σε λείο οριζόντιο επίπεδο, ξαφνικά δέχεται σταθερή δύναμη F=40N. H δύναμη F μπορεί να έχει μια από τις ακόλουθες διευθύνσεις:

Δύναμη F - Τριβή ολίσθησης

Σώμα μάζας m=2Kg εκτελεί ΕΟΚ με φορά κίνησης προς τα δεξιά πάνω σε μη λείο οριζόντιο επίπεδο, με το οποίο παρουσιάζει συντελεστή τριβής μ=0,5. Ξαφνικά δέχεται σταθερή δύναμη F=20N, η διεύθυνση της οποίας μπορεί να είναι  μια από τις ακόλουθες περιπτώσεις
Για συνέχεια εδώ.

Συνάντηση-Προσπέραση

Μια μοτοσυκλέτα και ένα ασθενοφόρο ξεκινούν από την ηρεμία την ίδια χρονική στιγμή (t=0), με το ασθενοφόρο να βρίσκεται μπροστά από τη μοτοσυκλέτα. Το ασθενοφόρο κινείται με σταθερή επιτάχυνση 1m/s2, ενώ η μοτοσυκλέτα έχει σταθερή επιτάχυνση μέτρου 2m/s2. Τα δύο κινητά συναντιούνται όταν το ασθενοφόρο έχει διανύσει απόσταση 32m.
α) Να βρεθεί ποια χρονική στιγμή η μοτοσυκλέτα προσπερνά το ασθενοφόρο.
β) Οι ταχύτητες των δύο κινητών τη στιγμή της συνάντησης τους.
γ) Η αρχική απόσταση (d) των δύο κινητών.

δ) Ποιες χρονικές στιγμές τα δύο κινητά απέχουν απόσταση 16m;

Να βρεθεί το ύψος

Να βρεθεί από ποιο ύψος (h) πρέπει να αφήσουμε ένα σώμα, έτσι ώστε στο τελευταίο δευτερόλεπτο της κίνησης του να διανύει το 36% της συνολικής διαδρομής του.

Θεωρούμε t=0 τη στιγμή που αφήσαμε το σώμα, y=0 τη θέση όπου το σώμα αφήνεται, θετική φορά προς τα κάτω και για τις πράξεις g=10m/s2.