Τρίτη, 16 Δεκεμβρίου 2014

Βρείτε τη μια δύναμη, από ένα διάγραμμα.

Σε λείο οριζόντιο επίπεδο ηρεμεί ένα σώμα. Σε μια στιγμή ασκούμε πάνω του δυο οριζόντιες δυνάμεις με μέτρα F1=6Ν και F2, όπως στο σχήμα, με αποτέλεσμα η ταχύτητα του σώματος να μεταβάλλεται, όπως στο διπλανό διάγραμμα.
i) Να υπολογίστε την επιτάχυνση του σώματος στα διάφορα χρονικά διαστήματα που φαίνονται στο διάγραμμα.
Αν δίνεται ότι τη στιγμή t1=4s η δύναμη F2 έχει μέτρο F2=4Ν.
ii) Τη στιγμή t2=8s, η δύναμη αυτή έχει μέτρο:
α) F2=2Ν,      β) F2=4Ν,      γ) F2=8Ν.
Να δικαιολογήσετε την απάντησή σας.
iii) Να υπολογιστεί η μάζα του σώματος καθώς και το μέτρο της δύναμης F2 στα χρονικά διαστήματα:
 α) από 10s-15s  και β) από 15s-20s.
iv) Να υπολογίσετε τη μετατόπιση του σώματος στο χρονικό διάστημα, από t2=15s έως τη στιγμή t3=16,2s.

ή
 Βρείτε τη μια δύναμη, από ένα διάγραμμα.
 Βρείτε τη μια δύναμη, από ένα διάγραμμα.


Τρίτη, 2 Δεκεμβρίου 2014

Μια απλή εφαρμογή των νόμων του Νεύτωνα.


Ένα σώμα μάζας 5kg ηρεμεί σε λείο οριζόντιο επίπεδο. Σε μια στιγμή δέχεται την επίδραση οριζόντιας δύναμης F, με αποτέλεσμα το σώμα να κινηθεί και στο διάγραμμα δίνεται η ταχύτητά του σε συνάρτηση με το χρόνο.
i) Να περιγράψετε την κίνηση του σώματος στα χρονικά διαστήματα από 0-10s και από 10s-20s.
ii) Να βρεθεί η επιτάχυνση του σώματος μέχρι τη στιγμή t=20s.
iii) Να υπολογίστε την ασκούμενη στο σώμα οριζόντια  δύναμη F, στο παραπάνω χρονικό διάστημα.
iv) Πότε παρουσιάζει μεγαλύτερη αδράνεια το σώμα, τη στιγμή t1=5s ή τη στιγμή t2=15s;
v) Να υπολογιστεί η μετατόπιση του σώματος από t1 έως t2.

ή
Μια απλή εφαρμογή των νόμων του Νεύτωνα.
Μια απλή εφαρμογή των νόμων του Νεύτωνα.


Τρίτη, 25 Νοεμβρίου 2014

Για πόσο χρόνο επιταχύνονται;


Στο ίδιο σημείο ενός ευθύγραμμου δρόμου βρίσκονται δύο αυτοκίνητα Α και Β. Σε μια στιγμή (έστω t0=0) τα δύο οχήματα ξεκινούν ταυτόχρονα να επιταχύνονται με σταθερές επιταχύνσεις. Τη στιγμή t1 το Α αυτοκίνητο σταματά να επιταχύνεται κινούμενο πλέον με σταθερή ταχύτητα υ1=20m/s, οπότε τη χρονική στιγμή t΄=30s έχει μετατοπισθεί κατά x1=500m.

i)  Να κάνετε ένα ποιοτικό διάγραμμα της ταχύτητας του Α αυτοκινήτου σε συνάρτηση με το χρόνο και να βρείτε ποια χρονική στιγμή t1, σταμάτησε να επιταχύνεται.
ii) Αν τη στιγμή t1 τα δυο αυτοκίνητα βρίσκονται το ένα δίπλα στο άλλο, να βρεθούν οι επιταχύνσεις τους.
iii) Τη χρονική στιγμή t2 το Β αυτοκίνητο σταματά με τη σειρά του να επιταχύνεται, κινούμενο πλέον με σταθερή ταχύτητα υ2. Να βρεθεί η ταχύτητα αυτή, αν τη στιγμή t΄=30s  προηγείται κατά 175m  του Α.
iv) Να γίνουν οι γραφικές παραστάσεις σε συνάρτηση με το χρόνο:
α) της μετατόπισης του Α αυτοκινήτου.

 β) της απόστασης των δύο αυτοκινήτων.
ή
Για πόσο χρόνο επιταχύνονται;
Για πόσο χρόνο επιταχύνονται;


Τετάρτη, 19 Νοεμβρίου 2014

Η μέγιστη επιτάχυνση ενός κιβωτίου.


Σε οριζόντιο επίπεδο ηρεμεί ένα κιβώτιο μάζας Μ=60kg, το οποίο παρουσιάζει με το επίπεδο τριβή με συντελεστές μs11=0,4. Ένα παιδί μάζας m=60kg, βάζοντας «όλη του τη δύναμη!», σπρώχνει το κιβώτιο με σταθερή δύναμη, με αποτέλεσμα να το μετακινεί κατά d=3,2m σε χρονικό διάστημα 4s. Μεταξύ των παπουτσιών και του επιπέδου, αναπτύσσεται τριβή με συντελεστές τριβής μs22=0,6, ενώ g=10m/s2.
i) Να υπολογιστεί η δύναμη που το παιδί άσκησε στο κιβώτιο και η τριβή που το επίπεδο ασκεί στο κιβώτιο και στο παιδί.
ii) Αφήνουμε το κιβώτιο να σταματήσει και τη θέση του παιδιού παίρνει ένας αρσιβαρίστας όπου στο αρασέ σηκώνει 150 κιλά, ο οποίος έχει την ίδια μάζα με το παιδί, φορώντας και τα ίδια παπούτσια.
α) Ποιος ο ελάχιστος χρόνος  που θα χρειαστεί για να μετακινήσει το κιβώτιο κατά την ίδια απόσταση d;
β) Πόση δύναμη ασκείται στο κιβώτιο από τον αρσιβαρίστα;

ή
Η μέγιστη επιτάχυνση ενός κιβωτίου.
Η μέγιστη επιτάχυνση ενός κιβωτίου.


Κυριακή, 16 Νοεμβρίου 2014

Συμπυκνωμένη Θεωρία Ευθύγραμμων Κινήσεων

Παρουσιάζω εδώ σε συμπυκνωμένη μορφή σημειώσεων τη θεωρία των ευθύγραμμων κινήσεων της Α Λυκείου (που ειναι βέβαια απαραιτητη και στις άλλες τάξεις).

Μπορείτε να κατεβάσετε τις σημειώσεις από εδώ ή να τις προβάλετε στον Browser σας από εδώ.
Για μιά πιό οικονομική έγχρωμη εκτύπωση κατεβάστε αυτό.
Για ασπρόμαυρη εκτύπωση αυτό.

Το αρχείο κατασκευής λιγο προγνέστερων  σημειώσεων από αυτές που βλέπετε στο TeX Live είναι εδώ και επομένως οι σημειώσεις εκεινες είναι open source.

Η ιδέα είναι να γραφτεί ενα βιβλίο φυσικής (όχι απαραίτητα λυκειακό βoήθημα) που να έχει στο τέλος  (ή στην αρχή) κάθε κεφαλαίου τέτοιες σημειώσεις που να συνοδευουν την πληρέστερη θεωρία αλλά να μπορούν να ξαναδιαβαστούν εύκολα σε μιά επανάληψη και να μή χρειάζεται ο αναγνώστης-μαθητής
να ανατρέχει στην πολυσέλιδη κουραστική θεωρία αλλά να υπάρχει στο κατάλληλο μέρος του βιβλίου μία τέτοια αρκετά λεπτομερής σχηματική (αν ειναι δυνατόν) σύνοψη που να κανει την επανάληψη πολύ πιό ευκολη. Έπειτα θα ακολουθούν ασκήσεις που δεν πολυ-αλληλό-καλύπτονται αλλά που καλύπτουν τις απαιτήσεις του μαθήματος και ξεχωρίζουν από το χρώμα τους ως προς το επίπεδο.

Πληρέστερη θεωρία (πιο αναλυτική) ευθύγραμμων κινήσεων (όχι σχηματικά) έχω ήδη αναρτήσει εδώ.

Υ.Γ.: Αν ενδιαφέρεται κάποιος εκδότης για το εγχείρημα που περιγράφω τα στοιχεία μου υπάρχουν στο αρχείο και ειμαι διατεθημένος μετά απο συνενόηση να αρχήσω άμεσα τη δουλειά.

Σάββατο, 8 Νοεμβρίου 2014

Διασταύρωση δύο αυτοκινήτων.


Ένα αυτοκίνητο (Α) κινείται σε ευθύγραμμο δρόμο με σταθερή ταχύτητα υ1=15m/s. Σε μια στιγμή t0=0 βλέπει ένα δεύτερο αυτοκίνητο (Β) που αρχικά ήταν ακίνητο, να ξεκινά με σταθερή επιτάχυνση κινούμενο αντίθετα. Η απόσταση των δύο αυτοκινήτων τη στιγμή t0=0 είναι d=250m.
Τα δυο οχήματα διασταυρώνονται τη χρονική στιγμή t1=10s. Θεωρείστε τη θέση του Α αυτοκινήτου τη στιγμή t0 ως αρχή του άξονα x και την δεξιά κατεύθυνση ως θετική και με βάση αυτό απαντήστε στα παρακάτω ερωτήματα.
i)  Σε ποια θέση συναντήθηκαν τα δυο αυτοκίνητα;
ii) Να υπολογιστεί η επιτάχυνση του Β αυτοκινήτου.
iii) Να γίνουν σε κοινά διαγράμματα και για τα δύο αυτοκίνητα, οι γραφικές παραστάσεις:
α) υ=υ(t),   β) Δx= Δx(t) και x=x(t)
μέχρι τη στιγμή της διασταύρωσης.
ή
Διασταύρωση δύο αυτοκινήτων.


Τρίτη, 4 Νοεμβρίου 2014

Ασκήσεις στην ευθύγραμμη ομαλή κίνηση


Έξι βασικές λυμένες ασκήσεις στην ευθύγραμμη ομαλή κίνηση.

Οι ασκήσεις με τις λύσεις τους από ΕΔΩ

Παρασκευή, 31 Οκτωβρίου 2014

Δύο διαγράμματα ταχύτητας.


Κατά μήκος ενός ευθύγραμμου δρόμου κινούνται δυο αυτοκίνητα και τη στιγμή t0=0 περνούν από ένα σημείο Ο, το οποίο θεωρούμε ως αρχή του άξονα x (x=0). Στο διπλανό διάγραμμα φαίνονται οι ταχύτητες των δύο αυτοκινήτων σε συνάρτηση με το χρόνο.
i) Να περιγράψετε αναλυτικά την κίνηση των δύο αυτοκινήτων, χωρίς μαθηματικές εξισώσεις και νόμους.
ii) Να υπολογίσετε τις επιταχύνσεις των αυτοκινήτων.
iii) Να βρεθεί η μέγιστη απόσταση μεταξύ των δύο αυτοκινήτων στο χρονικό διάστημα 0-20s.
iv) Πόσο απέχουν τα αυτοκίνητα τη χρονική στιγμή t2=20s;
v) Να κάνετε στο ίδιο διάγραμμα τις γραφικές παραστάσεις της θέσης κάθε αυτοκινήτου σε συνάρτηση με το χρόνο.
ή

Δύο διαγράμματα ταχύτητας.


Παρασκευή, 24 Οκτωβρίου 2014

Δύο επιταχυνόμενα αυτοκίνητα.


Σε ένα ευθύγραμμο δρόμο κινούνται αντίθετα δύο αυτοκίνητα με ταχύτητες μέτρων υ01=10m/s και υ02=20m/s. Τη στιγμή που η απόσταση μεταξύ τους είναι d=168m, οι οδηγοί προσδίδουν σταθερές επιταχύνσεις στα δυο οχήματα,  τα οποία διασταυρώνονται μετά από λίγο.
 
Το πρώτο αυτοκίνητο αποκτά επιτάχυνση μέτρου α1=4m/s2 και τη στιγμή της συνάντησης έχει αποκτήσει ταχύτητα υ1=26m/s. Θεωρήστε t=0 τη στιγμή που άρχισε η επιτάχυνση των οχημάτων και x=0 την αρχική θέση του πρώτου αυτοκινήτου και την προς τα δεξιά κατεύθυνση ως θετική και στη συνέχεια απαντήστε στα παρακάτω ερωτήματα:
i)  Ποια χρονική έγινε η διασταύρωση των δύο οχημάτων;
ii) Σε ποια θέση διασταυρώνονται τα αυτοκίνητα;
iii) Να υπολογιστεί η επιτάχυνση του δεύτερου αυτοκινήτου.
iv) Να γίνουν οι γραφικές παραστάσεις σε συνάρτηση με το χρόνο:
α) της μετατόπισης  και    β) της θέσης
κάθε αυτοκινήτου.
ή
Δύο επιταχυνόμενα αυτοκίνητα.



Πέμπτη, 16 Οκτωβρίου 2014

Δυο παιδιά συναντώνται.

Ο Αντώνης βγαίνει από το σπίτι του τη στιγμή t=0 και περπατώντας με σταθερή ταχύτητα κινείται σε ευθύγραμμο δρόμο, οπότε μετά από λίγο συναντά τον φίλο του Βασίλη, ο οποίος κινείται αντίθετα. Σταματούν για λίγο και συνομιλούν και στη συνέχεια συνεχίζουν την κίνησή τους. Στο παραπάνω διάγραμμα φαίνεται η θέση του Αντώνη σε συνάρτηση με το χρόνο, θεωρώντας αρχή του άξονα x (x=0) τη θέση της συνάντησης.
i) Να υπολογίστε την ταχύτητα του Αντώνη στα χρονικά διαστήματα που περπατά.
ii) Να κάνετε τα διαγράμματα σε συνάρτηση με το χρόνο:
α) της μετατόπισής του,     β) του διαστήματος που διανύει
μέχρι τη χρονική στιγμή t=90s.
iii) Αν ο Βασίλης περπατούσε με σταθερή ταχύτητα μέτρου 1,2m/s στο παραπάνω χρονικό διάστημα:
1. Να βρεθούν η αρχική και τελική θέση του.
2. Να γίνουν τα διαγράμματα:
α) της θέσης του,   β) της μετατόπισής του  και   γ) του διαστήματος που διανύει
ή
Δυο παιδιά συναντώνται.