Πέμπτη 16 Ιανουαρίου 2025

Δυο δυνάμεις επιταχύνουν ένα ‎σώμα

 

Ένα σώμα μάζας 8kg ηρεμεί σε ένα λείο οριζόντιο επίπεδο, στη θέση Ο, την οποία παίρνουμε σαν αρχή ενός ορθογωνίου συστήματος αξόνων x,y. Σε μια στιγμή στο σώμα ασκούνται δύο σταθερές οριζόντιες δυνάμεις, όπως στο σχήμα, όπου η δύναμη F1 σχηματίζει με τον άξονα x γωνία θ, ενώ η F2 έχει την διεύθυνση του άξονα y. Μετά από λίγο το σώμα περνά από τη θέση Α του άξονα x, έχοντας μετατοπισθεί κατά 4m, με ταχύτητα μέτρου 2m/s.

i)  Να  σχεδιάσετε την συνισταμένη δύναμη που ασκείται στο σώμα, δικαιολογώντας την κατεύθυνσή της και να εξηγήσετε γιατί η κίνηση του σώματος είναι ευθύγραμμη ομαλά επιταχυνόμενη.

ii) Να υπολογιστεί η επιτάχυνση του σώματος.

iii) Αφού υπολογιστεί η δύναμη που επιταχύνει το σώμα, να βρείτε το μέτρο της δύναμης F1.

iv) Ποιο το μέτρο της  δύναμης F2;

Δίνονται για την γωνία θ, ημθ=0,6 και συνθ=0,8.

Απάντηση:

ή

Παρασκευή 3 Ιανουαρίου 2025

Δύο κατακόρυφες βολές

 

Από ένα σημείο Α  στο έδαφος, εκτοξεύεται κατακόρυφα τη χρονική στιγμή t0=0 ένα βλήμα με αρχική ταχύτητα υ01=40m/s. Τη στιγμή t΄=2s, από ένα άλλο σημείο  Β του εδάφους, όπου η απόσταση (ΑΒ)=20m εκτοξεύεται ένα δεύτερο βλήμα με κατακόρυφη ταχύτητα υ02=35m/s.

i) Ποια χρονική στιγμή t1 το πρώτο βλήμα φτάνει στο μέγιστο ύψος; Να υπολογιστεί το ύψος αυτό.

ii) Ποια η ταχύτητα και ποια η θέση του δεύτερου βλήματος τη στιγμή t1;

iii) Ποιο βλήμα θα επιστρέψει πρώτο στο έδαφος;

iv) Να βρεθούν οι ταχύτητες των δύο βλημάτων και η απόσταση μεταξύ τους τη χρονική στιγμή t2=6s.

Η αντίσταση του αέρα θεωρείται αμελητέα, ενώ g=10m/s2.

Απάντηση:

ή

Δευτέρα 30 Δεκεμβρίου 2024

Από την ταχύτητα, στη μάζα του σώματος

 

Δυο σώματα Α και Β  ηρεμούν σε λείο οριζόντιο επίπεδο, ενώ  συνδέονται με ένα αβαρές και μη εκτατό νήμα. Σε μια στιγμή t0=0 ασκούμε στο σώμα Α μια σταθερή οριζόντια δύναμη F, η οποία έχει την διεύθυνση του νήματος, οπότε το σύστημα αρχίζει να κινείται προς τα δεξιά, όπως στο σχήμα. Τη χρονική στιγμή t1=2s, το νήμα που συνδέει τα δυο σώματα κόβεται, ενώ η δύναμη F, συνεχίζει να επιταχύνει μόνο το Α  σώμα, το οποίο έχει μάζα Μ=3kg. Στο διάγραμμα βλέπουμε πώς μεταβάλλεται η ταχύτητα του σώματος Α σε συνάρτηση με το χρόνο.

i) Να υπολογιστεί η επιτάχυνση του Α σώματος από 0-2s και από 2s-4s.

ii) Να βρεθεί το μέτρο της ασκούμενης δύναμης F.

iii) Πόση είναι η μάζα m του Β σώματος;

iv) Να γίνει η γραφική παράσταση υΒ=f(t), της ταχύτητας του Β σώματος σε συνάρτηση με το χρόνο για το χρονικό διάστημα 0-6s.

Απάντηση:

ή

Παρασκευή 27 Δεκεμβρίου 2024

Σπρώχνοντας δύο κιβώτια

 

Ένα παιδί σπρώχνει σε οριζόντιο επίπεδο δύο μεγάλα κιβώτια Α και Β, τα οποία βρίσκονται σε επαφή, ασκώντας σταθερή οριζόντια δύναμη F, πρώτα στο κιβώτιο Α, όπως στο πάνω σχήμα, οπότε το Α αποκτά επιτάχυνση μέτρου α1. Αν την ίδια οριζόντια δύναμη την ασκήσει στο Β κιβώτιο, όπως στο κάτω σχήμα, τότε αυτό αποκτά επιτάχυνση μέτρου α2. Δίνεται ότι το Α κιβώτιο έχει μεγαλύτερη μάζα από το Β, ενώ τα κιβώτια δεν παρουσιάζουν τριβές με το οριζόντιο επίπεδο.

i) Για τα μέτρα των δύο παραπάνω επιταχύνσεων ισχύει:

α) α1 < α2,       ‎ β) α1= α2,         γ) α> α2.

ii)  Αν F1 η δύναμη που ασκεί το κιβώτιο Α στο Β στην πάνω εικόνα  και F2 η αντίστοιχη δύναμη στην κάτω, τότε:

 α) Να σχεδιάσετε στο σχήμα τις δυνάμεις F1 και F2.

 β) Για τα μέτρα των παραπάνω δυνάμεων θα ισχύει:

β1) F1 < F2,         β2) F1 = F2,          β3) F1 > F2.

Να δικαιολογήσετε τις απαντήσεις σας.

Απάντηση:

ή

Δευτέρα 23 Δεκεμβρίου 2024

Στην καρότσα ενός φορτηγού.

 

Ένα σώμα Σ μάζας 5kg μεταφέρεται στην λεία καρότσα ενός φορτηγού το οποίο κινείται σε ευθύγραμμο οριζόντιο δρόμο με σταθερή επιτάχυνση α=0,8m/s2. Το σώμα είναι δεμένο στο άκρο οριζόντιου ελατηρίου σταθεράς k=40Ν/m, το οποίο έχει επιμηκυνθεί κατά Δl=0,15m και στο άκρο οριζόντιου νήματος, όπως στο σχήμα.

i)  Να υπολογίσετε το μέτρο της δύναμης που το  ελατήριο ασκεί στο σώμα Σ, καθώς την τάση του νήματος.

ii) Ποια τα μέτρα των δύο παραπάνω δυνάμεων, αν το φορτηγό σταματήσει να επιταχύνεται, κινούμενο με σταθερή ταχύτητα;

iii) Αν το φορτηγό αυξήσει σιγά – σιγά την επιτάχυνσή του, να υπολογισθεί η μέγιστη δυνατή επιτάχυνση που μπορεί να αποκτήσει, χωρίς να μεταβληθεί το μήκος του ελατηρίου.

iv) Τι πρόκειται να συμβεί αν το φορτηγό αυξήσει την επιτάχυνσή του στην τιμή α1=2m/s2;

Απάντηση:

ή

Τετάρτη 18 Δεκεμβρίου 2024

Ο μέγιστος και ο ελάχιστος χρόνος για μια διαδρομή

 Τριγωνική ανισότητα.

«Σε κάθε ένα 
τρίγωνο, το μήκος κάθε πλευράς είναι μικρότερο από το άθροισμα των μηκών των άλλων δύο πλευρών, καθώς και μεγαλύτερο από τη διαφορά τους».

Έτσι αν πάρουμε το διπλανό  τρίγωνο, θα ισχύει π.χ. για την πλευρά α:

β-γ < α < β+γ

Όμοια και για τις άλλες πλευρές του τριγώνου.

 

Εφαρμογή.

Σε ένα σώμα μάζας m=4kg, το οποίο ηρεμεί σε λείο οριζόντιο επίπεδο, ασκούνται δύο οριζόντιες δυνάμεις με μέτρα F1=6Ν και F2=10Ν, οι οποίες το μετακινούν κατά Δx=8m.

i)  Ποιος ο ελάχιστος χρόνος για την παραπάνω μετατόπιση;

ii) Ποιος ο μέγιστος χρόνος που μπορεί να απαιτηθεί για την μετατόπιση αυτή;

iii) Αν οι δυο δυνάμεις είναι κάθετες μεταξύ τους, όπως στο σχήμα (σε κάτοψη), σε πόσο χρονικό διάστημα το σώμα θα διανύσει την απόσταση των 8m;

Απάντηση:

ή

Τρίτη 3 Δεκεμβρίου 2024

Όταν παύει να ασκείται η μία δύναμη

  

Ένα σώμα ηρεμεί σε λείο οριζόντιο επίπεδο, όταν κάποια  στιγμή δέχεται  δύο οριζόντιες δυνάμεις με αντίθετες κατευθύνσεις, όπως στο σχήμα. Στο διάγραμμα δίνεται το πώς μεταβάλλεται η ταχύτητα του σώματος σε συνάρτηση με το χρόνο, όταν τη στιγμή t1 παύει να ασκείται η μια από τις παραπάνω δυνάμεις. Δίνεται ότι η κατεύθυνση προς δεξιά θεωρείται θετική και ότι η δύναμη F1 έχει σταθερό μέτρο.

i)  Η δύναμη F2 έχει σταθερό μέτρο ή είναι μεταβλητή;

ii) Ποια δύναμη έπαψε να ασκείται στο σώμα τη  στιγμή t1;

iii) Αν t2=1,5t1, τότε για τα μέτρα των δύο δυνάμεων ισχύει:

Να δικαιολογήσετε τις απαντήσεις σας.

Απάντηση:

ή

Τετάρτη 27 Νοεμβρίου 2024

Δυο παιδιά περπατούν

 

Δυο παιδιά, ο Άγγελος (Α) και ο Βαλέριος (Β), κινούνται σε έναν ευθύγραμμο δρόμο και σε μια στιγμή t0=0 περνούν από ένα σημείο Ο, το οποίο λαμβάνουμε ως αρχή ενός προσανατολισμένου άξονα x (xO=0), με θετική φορά προς τα δεξιά. Στο διπλανό διάγραμμα βλέπουμε πώς μεταβάλλεται η ταχύτητα καθενός παιδιού, σε συνάρτηση με το χρόνο.)

i)  Να βρεθούν οι θέσεις των δύο παιδιών και η  απόσταση μεταξύ τους  τη χρονική στιγμή t1=10s.

ii)  Ποια χρονική στιγμή t2 η ταχύτητα του Βαλέριου είναι ίση με υ2=+0,4s; Ποια η απόσταση μεταξύ των δύο παιδιών τη στιγμή αυτή;

iii) Αφού βρείτε (και δικαιολογήσετε) ποια χρονική στιγμή τα δυο παιδιά απέχουν την μεγαλύτερη απόσταση μεταξύ τους, να υπολογιστεί η  μέγιστη αυτή απόσταση, για το χρονικό διάστημα που προηγείται ο Άγγελος.

iv) Να βρείτε μια συνάρτηση d=f(t) που δίνει την απόσταση των δύο παιδιών σε συνάρτηση με το χρόνο και να κάνετε  τη γραφική της παράσταση, στο χρονικό διάστημα από 0-25s.


Απάντηση:

ή



Τετάρτη 20 Νοεμβρίου 2024

Δύο ευθύγραμμες κινήσεις

  Σε ευθύγραμμο δρόμο κινούνται δύο αυτοκίνητα Α και Β και σε μια στιγμή περνάνε από το ίδιο σημείο Ο (έστω τη χρονική στιγμή t0=0, ενώ και  x0=0 με θετική φορά του άξονα προς τα δεξιά). Στο σχήμα βλέπουμε πώς μεταβάλλονται οι ταχύτητες των δύο αυτοκινήτων σε συνάρτηση με το χρόνο.

 

Αντλώντας πληροφορίες από το διάγραμμα, να χαρακτηρίσετε ως σωστές ή λανθασμένες τις παρακάτω προτάσεις, δίνοντας σύντομες επεξηγήσεις, όπου απαιτούνται.

i) Τα δύο αυτοκίνητα διασταυρώνονται στην θέση Ο τη στιγμή t=0.

ii) Το Α αυτοκίνητο απέχει την μεγαλύτερη απόστασή του από το Ο τη χρονική στιγμή 2τ.

iii) Το αυτοκίνητο Β κινείται προς τα αριστερά για χρονικό διάστημα Δt=2τ.

iv) Τα δύο αυτοκίνητα επιταχύνονται κατά ίσα χρονικά διαστήματα, έχοντας επιταχύνσεις με ίσα μέτρα.

v) Το Α αυτοκίνητο  δεν ξαναπερνά από τη θέση Ο (x=0).

vi) Τα δυο αυτοκίνητα διασταυρώνονται ξανά  τη χρονική στιγμή t=4τ.


Απαντήσεις.

   ή

Δύο  ευθύγραμμες κινήσεις

Πέμπτη 7 Νοεμβρίου 2024

Δύο κινήσεις αυτοκινήτων

 

Κατά μήκος ενός ευθύγραμμου δρόμου κινούνται δυο αυτοκίνητα Α και Β, προς την ίδια κατεύθυνση. Παίρνοντας ως t0 =0 τη στιγμή που τα δυο οχήματα παιρνούν από ένα  σημείο Ο, το οποίο λαμβάνουμε ως αρχή ενός προσανατολισμένου άξονα x΄x, χαράσσουμε το διπλανό διάγραμμα για τις ταχύτητες των δύο αυτοκινήτων.

i) Να βρείτε τις επιταχύνσεις των αυτοκινήτων, για όσο χρονικό διάστημα το καθένα επιταχύνεται.

ii) Πόσο απέχουν μεταξύ τους τα δύο οχήματα τη στιγμή t1=10s;

iii) Να βρεθούν οι θέσεις των δύο αυτοκινήτων, τη στιγμή που σταματά το Β να κινείται. Ποια η νέα απόσταση μεταξύ τους;

Απάντηση:

ή

 Δύο κινήσεις αυτοκινήτων